

DIE ZWEITE GENERATION VON LÄNGENMESSTASTERN

Wegsensoren und Messnormteile

Auf die neuesten Anforderungen des Marktes im Hinblick auf Qualität entwickelt, ist **REDCrown2™** die Längenmesstaster-Linie, die den Qualitätsbedarf der Industrie erfüllt. Ausgehend von der großen Erfahrung von Marposs mit Messanwendungen und dank der Hinweise von Personen auf der ganzen Welt, die unsere Produkte in ihre Messsysteme integriert haben, definiert REDCrown2 einen neuen Standard im Messwesen.

Die Linie REDCrown2 umfasst eine digitalisierte Ausführung (DIGICrown2™) ebenso wie eine USB-Version (REDCrown2 USB™).

PRODUKT-

Wegsensoren und Messnormteile

Messgeräte für Bohrungen

Messgabeln und Messringe

Mehrstellen-Messsysteme

Messuhren und elektronische Anzeigegeräte

Interfaceboxen und Datenaufnahmesysteme

Software

REDCrown2

Eine Linie analoger Längenmesstaster, die sowohl mit einem Vollbrücken- (LVDT) als auch mit einem Halbbrücken- Messwertaufnehmer (HBT) ausgestattet sein können und in vielen Typen und Kompatibilität erhältlich sind.

DIGICrown2

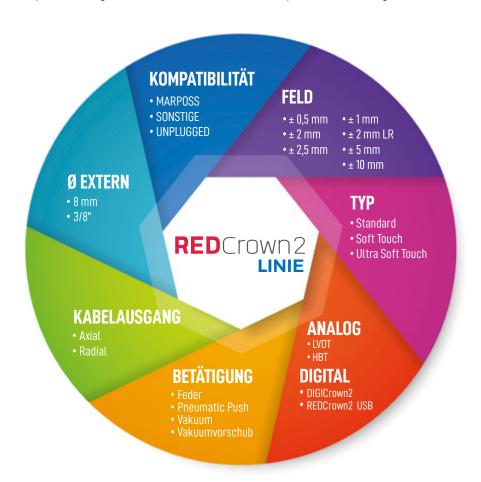
Die digitalisierte Ausführung, besonders genau und vielseitig, wird zusammen mit dem DIGICrown network system und der GAGEPod-Schnittstelle verwendet.

REDCrown2USB

Die linearisierte Ausführung der Taststifte, bei der die USB-Schnittstelle in den Standard-USB-Anschluss integriert ist. So können die Taststifte direkt an jede USB-Host-Vorrichtung angeschlossen werden.

Merkmale des Produkts

Das Projekt RedCrown2 bietet Merkmale, die eine sehr hohe Genauigkeit gewährleisten: Kugelbewegung, Schutz vor elektromechanischen Interferenzen durch die Verwendung von Mu-Metall und robuste Ausführung. Der Herstellungsprozess dieser Taststifte ist bis ins kleinste Detail festgelegt. Das Leistungsniveau von REDCrown2 garantiert eine herausragende Genauigkeit auch unter schwierigsten Anwendungsbedingungen, wenn in der Fertigung ein durchgehend hohes Niveau an Zuverlässigkeit erforderlich ist.


Die Linie **REDCrown2** sowie die digitalisierten Ausführungen **DigiCrown2** und **RedCrown2 USB** warten mit einer großen Bandbreite von Lösungen für jeden Anwendungsbedarf auf.

Die beiden Hauptreihen, Standard (mit Dichtung und Schutzgrad IP65), und Soft Touch (ohne Dichtung, Schutzgrad IP54) sind in folgenden Varianten erhältlich:

- Mit Messwertgebern vom Typ HBT und LVDT
- Sieben Messbereiche: ±0,5 mm, ±1 mm, ±2 mm, ±2 mmLR, ±2,5 mm, ±5 mm und ±10 mm
- Zustellung/Rückstellung mit Feder, Druckluft oder Vakuum
- Analoganschluss: Standard-Marposs-Stecker oder Stecker, die sich zur Schnittstellenverbindung mit Messelektroniken anderer Hersteller eignen
- Digitalanschluss f
 ür das DIGICrown network system™ und GAGEPod;
- USB-Stecker zur direkten Schnittstellenverbindung mit den Computern
- Die Ausführung ohne Stecker (unplugged) erlaubt es, die Sonden mit den eigenen, bevorzugten Steckern auszustatten
- Erhältlich sind auch OEM-"Private-Label"-Ausführungen mit dem Logo des Kunden, Auftragsnummern und eigener Verpackung

Produktpalette

Im folgenden Schema finden Sie eine Übersicht über die Produktpalette der Linie REDCrown2. Benötigen Sie ein spezielles Angebot, setzen Sie sich bitte mit Marposs in Verbindung.

Wegsensoren und Messnormteile

Messgeräte für Bohrungen

Messgabeln und Messringe

Mehrstellen-Messsysteme

Messuhren und elektronische Anzeigegeräte

Interfaceboxen und Datenaufnahmesysteme

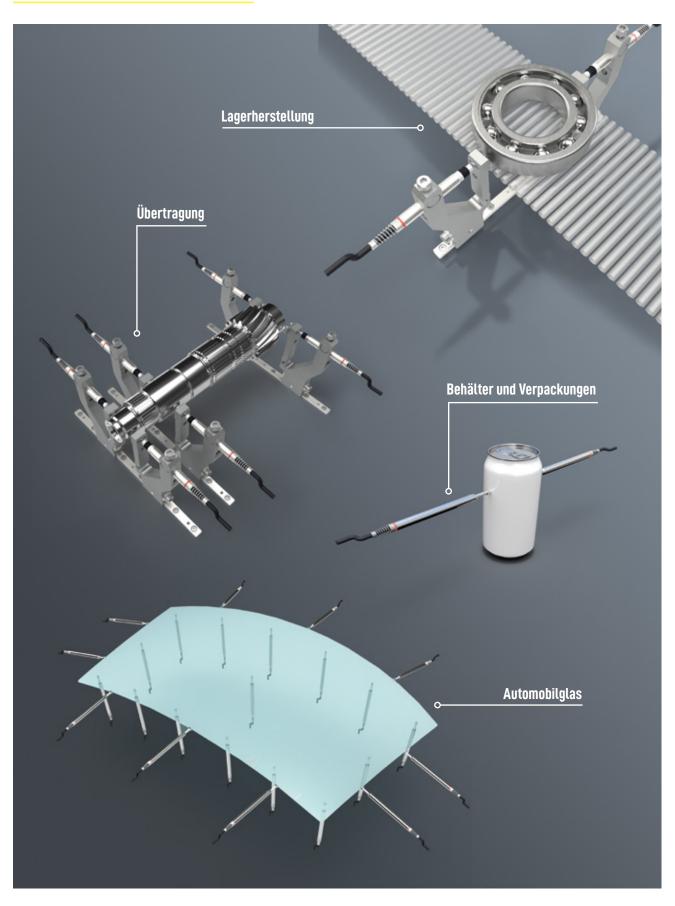
Software

Messgeräte für Bohrungen

Messgabeln und Messringe

Mehrstellen-Messsysteme

Messuhren und elektronische Anzeigegeräte


Interfaceboxen und Datenaufnahmesysteme

Software

Anwendungsbeispiele

PRODUKT-

Verbindungsmöglichkeiten

Mithilfe der Marposs-Schnittstellenboxen ist es möglich, die Linie REDCrown2 mit allen elektronischen Anzeigegeräten und der entsprechende Software zu verbinden.

Wegsensoren und Messnormteile

Messgeräte für Bohrungen

Messgabeln und Messringe

Mehrstellen-Messsysteme

Messuhren und elektronische Anzeigegeräte

Interfaceboxen und Datenaufnahmesysteme

Software

Messgeräte für Bohrungen

Messgabeln und Messringe

MARPOSS-Standard (mit Dichtung) ±0,5 mm

Mehrstellen-Messsysteme

Messuhren und elektronische Anzeigegeräte

Interfaceboxen und Datenaufnahmesysteme

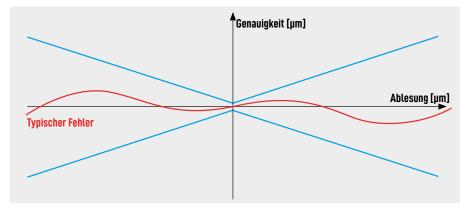
Software

REDCrown2 LVDT ist die Längenmesstasterlinie, die es in der Standard-Konfiguration (mit Dichtung und Schutzgrad IP65), mit hoch präziser Kugelbewegung und verschiedenen Anschlussmöglichkeiten gibt - je nach Anwendungsbedingungen und verwendeten Anzeigeschnittstellen.

Die analoge Ausführung mit LVDT-Messwertgeber erlaubt den Gebrauch zusammen mit Standard-Verstärkern von Marposs ebenso wie mit anderen Verstärkern, die auf dem Markt erhältlich sind.

Diese Messvorrichtungen sind sowohl mit Stecker als auch ohne (unplugged) erhältlich.

Mechanische Daten		±0,5 mm	±1 mm	±2 mm	±2 mm LongRange
Messbereich	[mm]	1	2	4	4
Mechanischer Weg	[mm]	1,5	3	6,6	11
Körper Ø	[mm]	8	8	8	8
Kabellänge	[m]	2	2	2	2
Betriebstemperatur	[°C]	Von -10 bis +65	Von −10 bis +65	Von -10 bis +65	Von -10 bis +65
Lagerungstemperatur	[°C]	Von -20 bis +100	Von -20 bis +100	Von -20 bis +100	Von −20 bis +100
Messtastergewinde		M2,5	M2,5	M2,5	M2,5
Genauigkeit	[µm]	(**)	±(0,3 + 5* K)	±(0,3 + 7* K)	±MIN(0,3 + 10* K ; 12 + 2* K)
Wiederholgenauigkeit (2,77 σ)	[µm]	≤0,15	≤0,15	≤0,15	≤0,15
Thermische Drift des Nullpunkts	[µm/°C]	<0,25	<0,25	<0,25	<0,25


±2 mm LongRange

	int Dicitony)		2 1111111												• • • • • • • • • • • • • • • • • • • •						2 11111		5		
Typische Empfindlichkeit	[mV/V/mm]	:	230				23	0						23	0							23	30		
Kalibriert auf			3,5	355V _{RMS}	@7,5k	Hz mit	Last 1M	1Ω//36	OpF			3,5355\	/ _{RMS} @7,5	5kHz n	nit Last	t 1MΩ/	/360pF		3	3,5355V	_{RMS} @7	,5kHz n	nit Las	t 1MΩ/	/360pF
Federkraft	[N/mm]	1	0,17	0,1	14	0,0	04	0.0	23		0.0	123	0,0	13	0	,02			0.0	23	0,0	13	0	,02	
Messkraft	[N±25%]	1	1,00	0,7	70	Von 0,8	bis 2,2	0,	4		0,	70	Von 0,7	bis2	-	0,5			0,7	0 0	Von 0,7	bis2	۱),4	
Druck des Mod. mit pneum. Vorschub	bar psi					Von 0, Von 7,5							Von 0,5 Von 7,5 t								Von 0,5 Von 7,5 l	- 1			
Druck des Mod. mit Vakuumrückstellung	bar psi						- 1	Von-0,45 Von-6,5								45 bis -0, ,5 bis -8,7								5 bis -0,6 5 bis -8,7	
Dichtung		Fluo	relast.			F	luorela	stomer					Fl	uorela	stome	r					F	luorela	astome	ſ	
Schutzgrad		1	P65				IP	55						IPé	55							IPé	65		
Tasterart		w w	vidia .				wic	lia						wid	lia							wic	lia		
Kabelausgang (A=axial- R=radial)		А	E	Α	E	Α	E	А	Ε	A E	А	E	А	E	Α	E	A	Е	Α	Е	Α	Ε	А	E	A E
Betätigung (*)			S	5	6	P	Р	١	1	PV		S	PF	9		٧	F	V	S		PI	P	'	V	PV
Handelsbezeichnung		F05	FR05	E .	FR10	FPA10	FPI	FVA10	FV10		F20	FR20	FPA20	FP20	FVA20	FV20			F21	FR21	FPA21	FP21	FVA21	FV21	
Bestellnummer		B3PR01L0000	B3PR01L1200	B3PR02L0000	B3PR02L1200	B3PR02L0400	B3PR02L1600	B3PR02L0560	B3PR02L1760		B3PR05L0199	B3PR05L1399	,	B3PR05L1759	,	,			B3PR1020199	B3PR1021399	B3PR1020559	B3PR1021759	B3PR1020599	B3PR1021799	
Soft Touch (ohne Dichtung)		±0,5	5 mm				±1 n	nm						±2 r	nm					±2	2 mn	n Lo	ngR	ang	е
Typische Empfindlichkeit	[mV/V/mm]	2	230				23	0						23	10							23			
Kalibriert auf			3,5	355V _{RMS}	@7,5kl	Hz mit	Last 1M	Ω//36)pF			3,5355\	/ _{RMS} @7,	5kHz n	nit Las	t 1MΩ/	/360pF		3	3,5355\	/ _{RMS} @7,	5kHz m	nit Last	:1ΜΩ/	/360pF
Kalibriert auf Federkraft	[N/mm]	0	3,5 ,070	355V _{RMS}		0.0	45	Ω//36)pF		0.0		0,0	01	nit Las	t 1MΩ/			0.0		0.0	10	nit Last	:1MΩ/	
Federkraft			,070	0,0	06	0.0 Von	45 0,18	Ω//36		n 0.14 his 2.	0.0)16	0,0 Von ()1 0,18	nit Las	t 1MΩ/	Von 0	1,14	0.0	16	0.0 Von	10 0,18	nit Last	:1MΩ/	Von 0,14
	[N±25%]				06 BO	0.0 Von bis	45 0,18 1,9	Ω//36	Vo	n 0,14 bis 2,	0.0		0,0 Von ()1 0,18 1,9	nit Las		Von 0	1,14 1,3		16 30	0.0 Von	10 0,18 1,9	nit Lasi		Von 0,14 bis 2,3
Federkraft	[N±25%] bar		,070	0,0	06 30	0.0 Von bis Von 0,	45 0,18 1,9 5 bis 2		Vo	n 0.125 bis 2	0.0)16	0,0 Von 0 bis Von 0,5	0,18 0,18 1,9 i bis 2	nit Las	v	Von 0 bis 2 on 0.12!	1,14 2,3 5 bis 2	0.0	16 30	0.0 Von bis Von 0,5	10 0,18 1,9 i bis 2	nit Last	V	Von 0,14 bis 2,3 on 0.125 bis 2
Federkraft Messkraft Druck des Mod. mit pneum. Vorschub	[N±25%] bar psi		,070	0,0	06 30	0.0 Von bis Von 0,	45 0,18 1,9		Vo Vo	on 0.125 bis 2 on 1.825 bis 29	0.0 3 0,)16	0,0 Von (0,18 0,18 1,9 i bis 2	nit Las	V	Von 0 bis 2 on 0.12! Von 1.825	1,14 2,3 5 bis 2 bis 29	0.0	16 30	0.0 Von	10 0,18 1,9 i bis 2	nit Las	V	Von 0,14 bis 2,3 on 0.125 bis 2 /on 1.825 bis 29
Federkraft Messkraft	[N±25%] bar psi bar		,070	0,0	06 30	0.0 Von bis Von 0,	45 0,18 1,9 5 bis 2		Voi Vo Vo	on 0.125 bis 2 on 1.825 bis 29 n -0,45 bis -0,4	0.0)16	0,0 Von 0 bis Von 0,5	0,18 0,18 1,9 i bis 2	nit Las	V	Von 0 bis 2 on 0.129 Von 1.825 on -0,45	1,14 2,3 5 bis 2 bis 29 bis -0,6	0.0	16 30	0.0 Von bis Von 0,5	10 0,18 1,9 i bis 2	nit Las	V	Von 0,14 bis 2,3 on 0.125 bis 2 /on 1.825 bis 29 on -0,45 bis -0,6
Federkraft Messkraft Druck des Mod. mit pneum. Vorschub	[N±25%] bar psi		,070	0,0	06 30	0.0 Von bis Von 0, Von 7,3	45 0,18 1,9 5 bis 2		Voi Vo Vo Vo	on 0.125 bis 2 on 1.825 bis 29 n -0,45 bis -0,4 on -6,5 bis -8,7	0.0	016 30	0,0 Von 0 bis Von 0,5	0,18 1,9 i bis 2 bis 29		V	Von 0 bis 2 on 0.129 on 1825 on -0,45 /on -6,51	1,14 2,3 5 bis 2 bis 29 bis -0,6	0.0	16 30	0.0 Von bis Von 0,5 Von 7,3	10 0,18 1,9 i bis 2 bis 29	nit Last	V N	Von 0,14 bis 2,3 on 0.125 bis 2 /on 1,825 bis 29 on -0,45 bis -0,6 /on -6,5 bis -8,7
Federkraft Messkraft Druck des Mod. mit pneum. Vorschub Druck des Mod. mit Vakuumrückstellung	[N±25%] bar psi bar		,070 0,3	0,0	06 30	0.0 Von bis Von 0, Von 7,3	45 0,18 1,9 5 bis 2 1 bis 29	er Vers	Voi Vo Vo Vo	on 0.125 bis 2 on 1.825 bis 29 n -0,45 bis -0,4 on -6,5 bis -8,7	0.0	016 30	0,0 Von 0 bis Von 0,5 Von 7,3	0,18 1,9 i bis 2 bis 29	ler Vers	V	Von 0 bis 2 on 0.129 on 1825 on -0,45 /on -6,51	1,14 2,3 5 bis 2 bis 29 bis -0,6	0.0	16 30	0.0 Von bis Von 0,5 Von 7,3	10 0,18 1,9 i bis 2 bis 29	der Vers	V N	Von 0,14 bis 2,3 on 0.125 bis 2 /on 1,825 bis 29 on -0,45 bis -0,6 /on -6,5 bis -8,7
Federkraft Messkraft Druck des Mod. mit pneum. Vorschub Druck des Mod. mit Vakuumrückstellung Schutzgrad	[N±25%] bar psi bar		,070 0,3 P50	0,0	06 30	0.0 Von bis Von 0, Von 7,3	145 0,18 1,9 5 bis 2 1 bis 29	er Vers	Vol Vo Vo Vo ion PP)	on 0.125 bis 2 on 1.825 bis 29 n - 0,45 bis - 0,4 on - 6,5 bis - 8,7	0.0	016 30	0,0 Von 0 bis Von 0,5 Von 7,3	01 0,18 1,9 i bis 2 bis 29	ler Vers	V	Von 0 bis 2 on 0.129 on 1825 on -0,45 /on -6,51	1,14 2,3 5 bis 2 bis 29 bis -0,6	0.0	16 30	0.0 Von bis Von 0,5 Von 7,3	10 0,18 1,9 i bis 2 bis 29 bis 29	der Vers	V N N N Sion PP	Von 0,14 bis 2,3 on 0.125 bis 2 /on 1,825 bis 29 on -0,45 bis -0,6 /on -6,5 bis -8,7
Federkraft Messkraft Druck des Mod. mit pneum. Vorschub Druck des Mod. mit Vakuumrückstellung Schutzgrad Tasterart Kabelausgang (A=axial- R=radial)	[N±25%] bar psi bar	III Nylor	,070 0,3 P50 n (PA66)	0,0	06 30	0.0 Von bis Von 0,1 Von 7,3 P50 (IPS	145 0,18 1,9 5 bis 2 1 bis 29 54 bei d Nylon (er Vers	Vol Vo Vo Vo ion PP)	on 0.125 bis 2 on 1.825 bis 29 on -0,45 bis -0,4 on -6,5 bis -8,7	0.0	016 30	0,0 Von 0 bis Von 0,5 Von 7,3	01 0,18 1,9 i bis 2 bis 29 4 bei d Nylon (ler Vers	V	Von 0 bis 2 ion 0.129 ion-0,45 ion-6,5 t	1,14 2,3 5 bis 2 bis 29 bis -0,6 bis -8,7	0.0	16 30	0.0 Von bis Von 0,5 Von 7,3	10 0,18 1,9 i bis 2 bis 29 bis 29	der Vers	V N	Von 0,14 bis 2,3 on 0.125 bis 2 /on 1.825 bis 29 on -0,45 bis -0,6 /on -6,5 bis -8,7)
Federkraft Messkraft Druck des Mod. mit pneum. Vorschub Druck des Mod. mit Vakuumrückstellung Schutzgrad Tasterart	[N±25%] bar psi bar	III Nylor	,070 0,3 P50 n (PA66)	0,0 0,3	06 80 IF	0.0 Von bis Von 0,1 Von 7,3	145 0,18 1,9 5 bis 2 1 bis 29 54 bei d Nylon (er Vers PA66)	Vol Vo Vo Vo ion PP)	on 0.125 bis 2 on 1.825 bis 29 n - 0,45 bis - 0,4 on - 6,5 bis - 8,7	0.0 3 0,	016 30	0,0 Von (bis Von 0,5 Von 7,3	01 0,18 1,9 i bis 2 bis 29 4 bei d Nylon (ler Vers (PA66)	V V V Sion PP	Von 0 bis 2 on 0.129 on 1.825 on -0,45 on -6,5 t	1,14 2,3 5 bis 2 bis 29 bis -0,6 bis -8,7	0.0 0,3	16 30	0.0 Von bis Von 0,5 Von 7,3	10 0,18 1,9 i bis 2 bis 29 bis 29 64 bei d	der Vers (PA66)	V N N N Sion PP	Von 0,14 bis 2,3 on 0.125 bis 2 /on 1,825 bis 29 on -0,45 bis -0,6 /on -6,5 bis -8,7
Federkraft Messkraft Druck des Mod. mit pneum. Vorschub Druck des Mod. mit Vakuumrückstellung Schutzgrad Tasterart Kabelausgang (A=axial- R=radial)	[N±25%] bar psi bar	III Nylor	,070 0,3 P50 n (PA66)	0,0 0,3	06 80 IF	0.0 Von bis Von 0,1 Von 7,3 P50 (IPS	145 0,18 1,9 5 bis 2 1 bis 29 54 bei d Nylon (er Vers PA66)	Vol Vo Vo Vo ion PP)	on 0.125 bis 2 on 1.825 bis 29 on -0,45 bis -0,4 on -6,5 bis -8,7	0.0 3 0,	016 30	0,0 Von 0 bis Von 0,5 Von 7,3	01 0,18 1,9 i bis 2 bis 29 4 bei d Nylon (ler Vers (PA66)	V V V Sion PP	Von 0 bis 2 ion 0.129 ion-0,45 ion-6,5 t	1,14 2,3 5 bis 2 bis 29 bis -0,6 bis -8,7	0.0 0,3	16 30	0.0 Von bis Von 0,5 Von 7,3	10 0,18 1,9 i bis 2 bis 29 bis 29 64 bei d	der Vers (PA66)	V N N N Sion PP	Von 0,14 bis 2,3 on 0.125 bis 2 /on 1.825 bis 29 on -0,45 bis -0,6 /on -6,5 bis -8,7)
Federkraft Messkraft Druck des Mod. mit pneum. Vorschub Druck des Mod. mit Vakuumrückstellung Schutzgrad Tasterart Kabelausgang (A=axial- R=radial) Betätigung (*)	[N±25%] bar psi bar	li Nylor A	,070 0,3 P50 n (PA66)	0,0 0,3	06 B0 IF	0.0 Von bis Von 0,4 Von 7,3 P50 (IPS	145 0,18 1,9 5 bis 2 1 bis 29 54 bei d Nylon (er Vers PA66)	Vol Vo Vo Vo Vo Vo Vo	on 0.125 bis 2 on 1.825 bis 29 n = 0,45 bis = 0,4 on = 6,5 bis = 8,7 A E PV	0.0 3 0,	116 30 E	0,0 Von 0,5 Von 0,5 Von 7,3 P50 (IP5	01 0,18 1,9 i bis 2 bis 29 4 bei d Nylon (ler Vers (PA66)	V V V Sion PP	Von 0 bis 2 on 0.129 /on1825 on -0,45 /on -6,5 t	1,14 2,3 5 bis 2 bis 29 bis -0,6 bis -8,7	0.0 0,3 A	116 180 IF	0.0 Von bis Von 0,5 Von 7,3	10 0,18 1,9 i bis 2 bis 29 64 bei d Nylon (der Vers (PA66) A V	V N N Sion PP	Von 0,14 bis 2,3 on 0.125 bis 2 /on 1825 bis 29 on -0,45 bis -0,6 /on -6,5 bis -8,7) A E PV

^{*} Bewegung S= Feder - PP= Pneumatischer Vorschub - V= Vakuum - PV= Vorschub/Vakuum - ** Genauigkeit = ± MAX (0,5 + 2*|K|; 7*|K|) HINWEIS: K= Messwert (mm)

REDCROWN2 LVDT

GENAUIGKEIT

Mechanische Daten		±2,5 mm	±5 mm	±10 mm
Messbereich	[mm]	5	10	20
Mechanischer Weg	[mm]	6,6	11	21
Ø Körper	[mm]	8	8	8
Kabellänge	[m]	2	2	2
Betriebstemperatur	[°C]	Von −10 bis +65	Von −10 bis +65	Von −10 bis +65
Lagerungstemperatur	[°C]	Von -20 bis +100	Von -20 bis +100	Von -20 bis +100
Messtastergewinde		M2,5	M2,5	M2,5
Genauigkeit	[µm]	±MIN(0,3 + 10* K ; 11 + 2* K)	±MAX(5,0 + 2* K ;7* K)	±MAX(10 + 2* K ;7* K)
Wiederholgenauigkeit (2,77 σ)	[µm]	≤0,15	≤0,15	≤0,15
Wärmebedingte Drift des Nullpunkts	[µm/°C]	<0,25	<0,25	<0,25

1	[100]																05			
Wärmebedingte Drift des Nullpunkts	[µm/°C]		<(1,25					<0,25							<0	,25			
MARPOSS-Standard (mit Dichtung)		±2,5	mm					:5 mr	1						±10	mm			
Typische Empfindlichkeit	[mV/V/mm]		1	15					115							2	3			
Kalibriert auf		3,53	55V _{RMS} @7,5kHz	mit Last 1M Ω //	360pF		3,535	55V _{RMS} @7,5	kHz mit L	ast 1M Ω /	/360pF			3,535	55V _{rms} @	17,5kHz r	nit Last	1ΜΩ//3	360pF	
Federkraft	[N/mm]	0,023	0,03	0,02		0,0	03	0,02		0,02			0,	03	0.0	016			1	
Messkraft	[N±25%]	0,70	Von 0,7 bis 2	0,5		0,7	70	Von 0,8 b	s 2	0,4			0),1	Von 0,	7 bis 2	-	-		
Druck des Mod. mit pneum. Vorschub	bar psi		Von 0,5 bis 1 Von 7,5 bis 14,5					Von 0,5 b Von 7,5 bis							Von 0, Von 7,5					
Druck des Mod. mit Vakuumrückstellung	bar psi			Von -0,45 bis -0,6 Von -6,5 bis -8,7					1	0,45 bis -0,6 -6,5 bis -8,7										
Dichtung			Fluorel	astomer				Flu	orelasto	ner						Fluorela	stomer			
Schutzgrad			IF	65					IP65							IP	65			
Tasterart			Wi	dia					widia							wi	dia			
Kabelausgang (A=axial- R=radial)		A E	A E	A E	A E	А	E	A	E A	E	A	E	Α	E	Α	E	Α	E	Α	E
Betätigung (*)		S	PP	٧	PV	S	3	PP		٧	F	V	,	S	P	P	١	ı	P	٧٧
Handelsbezeichnung		F25 FR25	FPA25 FP25	FVA25 FV25		F50	FR50	FPA50	FP50	FV50			F100	FR100	FPA100	FP100	•			1
Bestellnummer		B3PR05L0000 B3PR05L1200	B3PR05L0400 B3PR05L1600	B3PR05L0560 B3PR05L1760		B3PR10L0000	B3PR10L1200	B3PR10L0400	B3PK10L1600	B3PR10L1760	·		B3PR20L0000	B3PR20L1200	B3PR20L0400	B3PR20L1600				
Soft Touch (ohne Dichtung)			±2,5	mm				:	5 mr	า						±10	mm			
Typische Empfindlichkeit	[mV/V/mm]		1	15					115							2	3			
Kalibriert auf		3,53	55V _{RMS} @7,5kHz	mit Last 1MΩ//	360pF		3,535	55V _{RMS} @7,5	kHz mit L	ast 1M Ω /	/360pF			3,535	55V _{RMS} @	7,5kHz r	nit Last	1ΜΩ//3	360pF	
Federkraft	[N/mm]	0,016	0,01			0,0	02	0,07					0.0	030	0.	010				
		1	1	1	1			1											1	

		ВЗР	ВЗР	ВЗР	B3P	ВЗР	ВЗР		ВЗР	ВЗР	ВЗР	ВЗР	ВЗР	ВЗР		ВЗР	B3P	ВЗР	ВЗР			
Soft Touch (ohne Dichtung)					±2,5	mm						±5	mm						±10	mm		
Typische Empfindlichkeit	[mV/V/mm]				11	15						1	15						2	3		
Kalibriert auf			3,5355	5V _{RMS} @7	,5kHz n	nit Last	1ΜΩ//	/360pF		3,53	55V _{rms} @	7,5kHz	mit Las	t 1MΩ/.	/360pF		3,53	55V _{RMS} @	7,5kHz n	nit Last 1M	Ω//3	60pF
Federkraft	[N/mm]	0,0	016	0,	01				0	,02	0,	07				0.0	030	0.0	010	l		
Messkraft	[N±25%]	0,	,30	Von bis				Von 0,14 bis 2,3	0	,30	Von 0,1	B bis 1,9			Von 0,14 bis 2,3	0,	,30	Von 0,1	8 bis 1,9			Von 0,14 bis 2,3
Druck des Mod. mit pneum. Vorschub	bar psi			Von 0,5 Von 7,3	5 bis 2 bis 29			Von 0.125 bis 2 Von 1.825 bis 29				5 bis 2 3 bis 29			Von 0.125 bis 2 Von 1.825 bis 29			1	5 bis 2 3 bis 29			Von 0.125 bis 2 Von 1.825 bis 29
Druck des Mod. mit Vakuumrückstellung	bar psi							Von -0,45 bis -0,6 Von -6,5 bis -8,7							Von -0,45 bis -0,6 Von -6,5 bis -8,7						- 1	Von -0,45 bis -0,6 Von -6,5 bis -8,7
Schutzgrad				IP50 (IP	54 bei d	der Versi	ion PP))			IP50 (II	P54 bei	der Vers	sion PP)			IP50 (IF	P54 bei d	der Version	PP)	
Tasterart					Nylon	(PA66)						Nylon	(PA66)						Nylon	(PA66)		
Kabelausgang (A=axial- R=radial) Betätigung (*)		A	E S	A	E P	A V	E	A E	Α	E S	A	E P	A	E	A E	A	E S	A F	E E	A V	E	A E
Handelsbezeichnung		F25L	FR25L	FPA25L	FP25L	,	FV25L	FPVA25L :	F50L	FRSOL	FPA50L	FP50L	FVA50L	FV50L	FPVA50L .	F100L	FRIOOL	FPA100L	FP100L			FPVA100L FPV100L

B3PR05L6760

32PR05L5000

Bestellnummer

Wegsensoren und Messnormteile

Messgeräte für Bohrungen

Messgabeln und Messringe

Mehrstellen-Messsysteme

Messuhren und elektronische Anzeigegeräte

Interfaceboxen und Datenaufnahmesysteme

Software

Linie REDCrown2

33PR20L6600

B3PR20L5800

33PR20L5400

B3PR20L5000

B3PR10L7000

Messgeräte für Bohrungen

Messgabeln und Messringe

Mehrstellen-Messsysteme

Messuhren und elektronische Anzeigegeräte

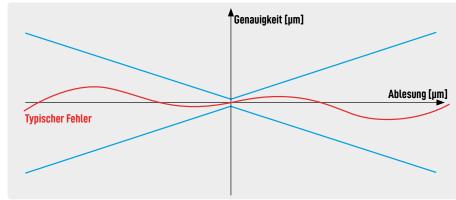
Interfaceboxen und Datenaufnahmesysteme

Software

REDCrown2 HBT ist die Längenmesstasterlinie, die es in der Standard-Konfiguration (mit Dichtung und Schutzgrad IP65) oder als Soft Touch (ohne Dichtung, Schutzgrad IP54) gibt, mit hoch präziser Kugelbewegung und verschiedenen Anschlussmöglichkeiten - je nach Anwendungsbedingungen und verwendeten Anzeigeschnittstellen.

Die analoge Ausführung mit HBT-Messwertgeber erlaubt den Gebrauch zusammen mit Standard-Verstärkern von Marposs ebenso wie mit anderen Verstärkern, die auf dem Markt erhältlich sind.

Diese Messvorrichtungen sind sowohl mit Stecker als auch ohne (unplugged) erhältlich.


Mechanische Daten		±0,5 mm	±1 mm	±2 mm	±2 mm LongRange
Messbereich	[mm]	1	2	4	4
Mechanischer Weg	[mm]	1,5	3	6,6	11
Ø Körper	[mm]	8	8	8	8
Kabellänge	[m]	2	2	2	2
Betriebstemperatur	[°C]	Von -10 bis +65	Von -10 bis +65	Von −10 bis +65	Von −10 bis +65
Lagerungstemperatur	[°C]	Von -20 bis +100			
Messtastergewinde		M2,5	M2,5	M2,5	M2,5
Genauigkeit	[µm]	(**)	±(0,3 + 5* K)	±(0,3 + 7* K)	±MAX (2,0 + 2* K ;7* K)
Wiederholgenauigkeit (2,77 σ)	[µm]	≤0,15	≤0,15	≤0,15	≤0,15
Wärmehedingte Drift des Nullnunkts	[um/°C]	< 0.25	<0.25	<0.25	<0.25

Wärmebedingte Drift des Nullpunkts	[µm/°C]	<(),25				<0	,25							<0,	,25							<[]	,25		
MARPOSS-Standard (n	nit Dichtung)	±0,5	mm				±1 r	nm							±2 r	nm					±	2 mr	n Lo	ngR	ang	ge
Typische Empfindlichkeit	[mV/V/mm]	73	3,75				73,	,75							73,	75								,75		
Kalibriert auf			3,5	5355V _{rm}	_s @7,5l	kHz mit	t Last 2	2KΩ±0,	1%				3,535	5V _{RMS} @7	,5kHz	mit Las	t 2KΩ	±0,1%			3,535	5V _{RMS} @	7,5kHz	mit Las	st 2KΩ	2±0,1%
Federkraft	[N/mm]	0	,17	0,1	14	0,0		0.0	123			0.0	23	0,0	3	0,0	2			0.0	23	0,1	03	0,0	02	
Messkraft	[N±25%]	1,	00	0,7	70	Von bis		0,	,4			0,	70	Von 0,7	bis 2	0,5	5			0,7	0	Von 0,	7 bis 2	0,	4	
Druck des Mod. mit pneum. Vorschub	bar psi					Von 0,5 Von 7,51	- 1							Von 0,5 Von 7,5 b	- 1							Von 0, Von 7,5				•
Druck des Mod. mit Vakuumrückstellung	bar psi							Von-0,49 Von-6,5								Von-0,45 Von-6,51								Von -0,45		
Dichtung	r -	Fluoi	relast.			F	luorela	astome	r	•				Fl	uorela	stomer						F	luorel	astome	r	•
Schutzgrad		IF	65				IP	65							IP	65								65		
Tasterart		w	idia				Wid	dia							wic	dia							Wi	dia		
Kabelausgang (A=axial- R=radial)		А	E	А	E	A	E	А	E	A	E	Α	E	A	E	Α	E		Е	А	E	А	E	A	E	A E
Betätigung (*)			S	S	6	PI	P	١	/	F	V		3	PF)	V		PV	'	S		P	Р	\	1	PV
Handelsbezeichnung		92 22	HR05	문	HR10	HPA10	E-B-B	HVA10	HV10	•		Н20	HR20	HPA20	HP20	HVA20	HV20	1		121	HRZI	HPA21	HP21	HVA21	HV21	
Bestellnummer		B3PR01N0000	B3PR01N1200	B3PR02N0000	B3PR02N1200	B3PR02N0400	B3PR02N1600	B3PR02N0560	B3PR02N1760	•	•	B3PR05N0199	B3PR05N1399	•	B3PR05N1759	•	•	•	•	B3PR10N0199	B3PR10N1399	B3PR10N0559	B3PR10N1759	B3PR10N0599	B3PR10N1799	
Soft Touch - TESA (ohne			mm				±1 r								±2 r						±	2 mr		ngR	ang	ge
Typische Empfindlichkeit	[mV/V/mm]	73	,75				73,								73,									,75		
Kalibriert auf				3V _{RMS} @				2±0,1%						_{RMS} @13k		t Last 2	KΩ±0	,1%				1		it Last 2	KΩ±0	0,1%
Federkraft	[N/mm]		070	0,0		0.0	-						016	0,0						0.0		0.0				
Messkraft Druck des Mod. mit pneum. Vorschub	[N±25%] bar psi bar	0	1,3	0,3		Von 0,18 Von 0,5 Von 7,3	5 bis 2			Von 0,14 Von 0.12 Von 1.82 Von -0,45	!5 bis 2 5 bis 29		30	Von 0,18 Von 0,5 Von 7,3	bis 2		۷ ۱	/on 0,14 b on 0.125 /on 1.825 b on -0,45 b	bis 2 ois 29	0,3	80	Von 0,16 Von 0, Von 7,3				Von 0,14 bis 2, Von 0.125 bis Von 1,825 bis 2! Von -0,45 bis -0
Druck des Mod. mit Vakuumrückstellung	psi									Von -6,5								≤0,9								Von -6,5 bis -8,
Schutzgrad			50		II	P50 (IP5			sion P	P)			- 1	P50 (IP5			ion PF	9)			- 1	IP50 (IP		der Vers	sion P	P)
Tasterart		Nylon	(PA66)				Nylon	(PA66)							Nylon	(PA66)							Nylon	(PA66)		
Kabelausgang (A=axial- R=radial) Betätigung (*)		Α	E S	A	E	A	E	A	E	A P	E	Α	E S	A	E	A	E	A PV	E	A	E	A	E	A	E	A E
Handelsbezeichnung		H05L	HR05L	H10L	HR10L	HPA10L	HP10L	,	,	HPVA10L	HPV10L	H20L	HR20L	HPA20L	HP20L	,		_	HPV20L	HZ1L	HR21L	HPA21L	HPZIL	HVA21L	HV21L	HPVAZ1L
Bestellnummer		PR01T5000		PR02T5000	PR02T6200	PR02T5400	PR02T6600	,		PR02T5800	PR02T7000	PR05T5199		i.		i.				PR10T5199	PR10T6399	PR10T5559	PR10T6759	i.		PR10T5999 PR10T7199

^{*} Bewegung S= Feder - PP= Pneumatischer Vorschub - V= Vakuum - PV= Vorschub/Vakuum - ** Genauigkeit = ± MAX (0,5 + 2*|K|; 7*|K|) HINWEIS: K= Messwert (mm)

REDCROWN2 HBT ____

GENAUIGKEIT

	Genauigkeit [µm]
	Ablesung [µm]
Typischer Fehler	

Mechanische Daten		±2,5 mm	±5 mm	±10 mm
Messbereich	[mm]	5	10	20
Mechanischer Weg	[mm]	6,6	11	21
Ø Körper	[mm]	8	8	8
Kabellänge	[m]	2	2	2
Betriebstemperatur	[°C]	Von −10 bis +65	Von −10 bis +65	Von -10 bis +65
Lagerungstemperatur	[°C]	Von -20 bis +100	Von -20 bis +100	Von -20 bis +100
Messtastergewinde		M2,5	M2,5	M2,5
Genauigkeit	[µm]	±MAX (2,5 + 2* K ;7* K)	±MAX(5,0 + 2* K ;7* K)	±MAX(10 + 2* K ;7* K)
Wiederholgenauigkeit (2,77 σ)	[µm]	≤0,15	≤0,15	≤0,15
Wärmebedingte Drift des Nullpunkts	[µm/°C]	<0,25	<0,25	<0,25

MARPOSS-Standard (n	nit Dichtung)				±2,5	mm						±5 :	mm							±10	mm			
Typische Empfindlichkeit	[mV/V/mm]				36.	875						21	9,5							7.3	375			
Kalibriert auf			3,535	55V _{RMS} @)7,5kHz	mit Last	2KΩ±	0,1%		3,53	55V _{RMS} @)7,5kHz	z mit Las	t 2KΩ:	±0,1%			3,53	855V _{RMS} (@7,5kHz	mit La	st 2KΩ±	0,1%	
Federkraft	[N/mm]	0.0	123	0,	03	0,0	12		0,	03	0,0	12	0,0	2			0,0	03	0.0	016		-		
Messkraft	[N±25%]	0,7	70	Von 0,	7 bis 2	0,5	5		0,	70	Von 0,8	bis 2	0,4	4			0	,1	Von 0,	7 bis 2		-		
Druck des Mod. mit pneum. Vorschub	bar psi				5 bis 1 bis 14,5						Von 0,5 Von 7,5 I									5 bis 1 bis 14,5				
Druck des Mod. mit Vakuumrückstellung	har			•		Von -0,45 Von -6,5							Von -0,45 Von -6,5									- -		
Dichtung				- 1	Fluorela	estomer						Fluorel	astomer							Fluorela	estome	r		
Schutzgrad					IP	65						IP	65							IP	65			
Tasterart					wi	dia						wi	idia							wi	dia			
Kabelausgang (A=axial- R=radial)		Α	Е	А	E	Α	Е	A E	Α	Е	Α	Е	А	Е	Α	Е	А	Е	A	E	Α	E	А	E
Betätigung (*)		8	6	P	P	٧		PV		S	PI	0	V		P	/	9	3	F	P		٧	F	V
Handelsbezeichnung		H25	HR25	HPA25	HP25	HVA25	HV25	1 1	H50	HR50	HPA50	HP50	HVA50	HV50	•	•	H100	HR100	HPA100	HP100		,		
Bestellnummer		B3PR05N0000	B3PR05N1200	B3PR05N0400	B3PR05N1600	B3PR05N0560	B3PR05N1760		B3PR10N0000	B3PR10N1200	B3PR10N0400	B3PR10N1600	B3PR10N0560	B3PR10N1760	÷	·	B3PR20N0000	B3PR20N1200	B3PR20N0400	B3PR20N1600			÷	

Soft Touch - TESA (ohn	e Dichtung)				±2,5	mm							±5 ı	mm							±10	mm			
Typische Empfindlichkeit	[mV/V/mm]				73	75							29	7,5							7.3	75			
Kalibriert auf			3	V _{RMS} @1:	3KHz mi	t Last 2K	Ω±0,	1%			3	V _{RMS} @1:	3KHz mi	t Last 2	KΩ±0,	1%			3	IV _{RMS} @13	KHz mi	t Last 2	!KΩ±0,	1%	
Federkraft	[N/mm]	0.0	016	0	,01					0,	02	0,	07					0.0	030	0.0)10				
Messkraft	[N±25%]	0,	30	Von 0,1	18 bis 1,9			Von 0,14	bis 2,3	0,	30	Von 0,1	3 bis 1,9			Von 0,14	bis 2,3	0,3	30	Von 0,1	B bis 1,9			Von 0,1	4 bis 2,3
Druck des Mod. mit pneum. Vorschub	bar psi			1	,5 bis 2 3 bis 29			Von 0.12 Von 1.82				Von 0, Von 7,3	5 bis 2 Ibis 29			Von 0.1: Von 1.82					5 bis 2 8 bis 29				25 bis 2 25 bis 29
Druck des Mod. mit Vakuumrückstellung	bar psi			•				Von-0,45 ≤0								Von -0,4 Von -6,5	5 bis -0,6 i bis -8,7							Von -0,4 Von -6,1	5 bis -0,6 5 bis -8,7
Schutzgrad				IP50 (II	P54 bei d	ler Versio	on PP)	,				IP50 (II	54 bei d	der Vers	sion PP)				IP50 (IF	54 bei o	der Vers	sion PP)	
Tasterart					Nylon	(PA66)							Nylon	(PA66)							Nylon	(PA66)			
Kabelausgang (A=axial- R=radial)		Α	Е	А	E	Α	E	А	E	Α	E	Α	Е	Α	Е	A	E	Α	E	А	Е	А	E	A	E
Betätigung (*)			S	F	PP	v		P	V	;	3	Р	Р	١	i	Р	V	9	S	P	P		v	F	V
Handelsbezeichnung		H25L	HR25L	HPA25L	HP25L			HPVA25L	HPV25L	H50L	HR50L	HPA50L	HP50L			HPVA50L	HPV50L	H100LL	HR100L	HPA100L	HP100L		1	HPVA100L	HPV100L
Bestellnummer		B3PR05T5000	B3PR05T6200	B3PR05T5400	B3PR05T6600			B3PR05T5800	B3PR05T7000	B3PR10T5000	B3PR10T6200	B3PR10T5400	B3PR10T6600		,	B3PR10T5800	B3PR10T7000	B3PR20T5000	B3PR20T6200	B3PR20T5400	B3PR20T6600			B3PR20T5800	B3PR20T7000

Wegsensoren und Messnormteile

Messgeräte für Bohrungen

Messgabeln und Messringe

Mehrstellen-Messsysteme

Messuhren und elektronische Anzeigegeräte

Interfaceboxen und Datenauf-nahmesysteme

Software

DIGICROWN2

Wegsensoren und Messnormteile

Messgeräte für Bohrungen

Messgabeln und Messringe

Mehrstellen-Messsysteme

Messuhren und elektronische Anzeigegeräte

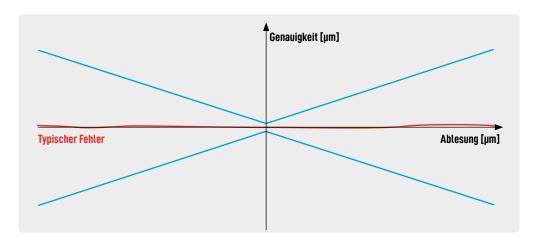
Interfaceboxen und Datenaufnahmesysteme

Software

DIGICrown2, die Digitalversion, ist die Sondenlinie, die zusammen mit dem DIGICrown network system folgende Vorteile bietet:

- GENAUIGKEIT. Das hohe Niveau der Messgenauigkeit ist durch die Linearisierungsdaten, die im Stecker gespeichert sind, garantiert. Die DIGICrown-Box ist dazu imstande, das Fehlerbild auszulesen und eine automatische Kompensation durchzuführen.
- PLUG & GAUGE. Die im Stecker gespeicherten Informationen ermöglichen den Anschluss jedes DIGICrown2-Messtasters an das DIGICrown-Netzwerk, ohne dass die einzelnen Messtaster extra programmiert werden müssen.
- FLEXIBILITÄT. Die Modulbauweise des Systems ermöglicht es, ein Netz zu erzeugen, in dem so wenig Schnittstellenboxen mit 2 Kanälen wie möglich für die Anzahl der Messtaster, die für die Anwendung nötig sind, verwendet werden. DIGICrown2-Taster können mit jeder Art von Inkrementalsensoren verwendet werden, ebenso mit Sensoren mit Analogausgang und verschiedenen I/O-Schnittstellen, um die komplette Integration der Maschine in ein globales DIGICrown2-Netzwerk zu erreichen.
- VIELSEITIGKEIT. Bei der Planung der Anwendung kann jeweils der am besten geeignete Messtaster ausgewählt werden (für jeden Messbereich sind Modelle in der Ausführung mit Feder oder mit pneumatischem Vorschub, mit Kabel mit Radialoder Axialausgang, mit oder ohne Dichtung verfügbar) und an das Netzwerk-Schnittstellenmodul angeschlossen werden.
- **ANWENDUNGEN.** Es ist möglich, sowohl statische als auch dynamische, synchronisierte Messungen durchzuführen (maximale Messfrequenz: 4000 Abtastungen/s).
- VERBINDUNGSMÖGLICHKEITEN. Die DIGICrown2-Längenmesstaster wurden für das DIGICrown network system und die GAGEPod-Systeme entwickelt.

Mechanische Daten		±0,5 mm	±1 mm	±2 mm	±2 mm LongRange
Messbereich	[mm]	1	2	2	4
Mechanischer Weg	[mm]	1,5	3	6,6	11
Ø Körper	[mm]	8	8	8	8
Kabellänge	[m]	2	2	2	2
Betriebstemperatur	[°C]	Von -10 bis +65	Von -10 bis +65	Von −10 bis +65	Von -10 bis +65
Lagerungstemperatur	[°C]	Von -20 bis +100			
Messtastergewinde		M2,5	M2,5	M2,5	M2,5
Genauigkeit	[µm]	±(0,2+K*1)	±(0,2+K*1)	±(0,3+ 7*K)	-
Wiederholgenauigkeit (2,77 σ)	[µm]	≤0,15	≤0,15	≤0,15	≤0,15
Wärmebedingte Drift des Nullpunkts	[µm/°C]	<0,25	<0,25	<0,25	<0,25


Standard (mit Dichtung)		±0,5 n	nm			±1 r	nm					±2	mm	1				1	2 mm	Loi	ngRa	ng	е
Federkraft	[N/mm]	0,17		0,14	0,0)4	0.023			0.0	123	0,03	0	1,02			0.0	23	0,03		0,02		
Messkraft	[N±25%]	1,00		0,70	Von 0,8	bis 2,2	0,4			0,	70	Von 0,7 bis 2	2 1	0,5			0,7	0	Von 0,7 bis	2	0,4		
Druck des Mod. mit pneum. Vorschub	bar psi				Von 0,5 Von 7,5	1						Von 0,5 bis Von 7,5 bis 14,5							Von 0,5 bis Von 7,5 bis 14,	- 1			
Druck des Mod. mit Vakuumrückstellung	bar psi						Von-0,45 bis Von-6,5 bis							45 bis-0,6 ,5 bis -8,7	1						n -0,45 bi on -6,5 bis		
Dichtung		Fluorela	est.		F	luorela	astomer					Fluore	lastom	er					Fluo	relas	tomer		
Schutzgrad		IP65				IP	65					1	P65							IP6	5		
Tasterart		widia	ì			wio	dia					V	vidia							widi	a		
Kabelausgang (A=axial- R=radial)		l a l	F	A	A	Е	А	E	A E	A	Е	AE	l a	E	A	Е	A	Е	AE		A	E	A
Betätigung (*)		S	_	S	P		V		PV		S	PP		٧	P		S		PP		V		PV
Handelsbezeichnung		100	RD01	D02	PAD02	PD02	VAD02	VD02		700	RD04	PAD04 PD04	VAD04	700A	1		,	,					•
Bestellnummer		33PD01N0000	:3PD01N1200	33PD02N0000	33PD02N0400	33PD02N1600	33PD02N0560	33PD02N1760						ì				í					

Soft Touch (ohne Dichtung)		±0,5 m	nm			±1	mm						±2 n	nm					±	2 m	m Lo	ongF	Ran	ge	
Federkraft	[N/mm]	0.070		0,06		0.045				0.0	116	0,0	11					0,	016	0,	,010				
Messkraft	[N±25%]	0,3		0,30	Vo	on 0,18 bis 1,	9	Von 0	14 bis 2,3	0,3	30	Von 0,18	bis 1,9			Von 0,14	bis 2,3	0,	,30	Von 0,	18 bis 1,9			Von 0,	14 bis 2,
Druck des Mod. mit pneum. Vorschub	bar				Vo	on 0,5 bis 3	2	Von O	.125 bis 2			Von 0,5	bis 2		ľ	Von 0.12	5 bis 2	1		Von 0	1,5 bis 2			Von O.	125 bis
brock des Piod. Hitt pheom. Vorschob	psi				V	on 7,3 bis 29/		Von 1.	825 bis 29			Von 7,3	bis 29			Von 1.825	5 bis 29			Von 7	,3 bis 29			Von 1.8	325 bis 29
Druck des Mod. mit Vakuumrückstellung	bar							Von -0	,45 bis -0,6							Von -0,45	bis -0,6							Von -0,	45 bis -0,
brook dos riod. Hit vakoomi ookstettong	psi							Von-	5,5 bis -8,7							Von -6,5	bis -8,7							Von-6	,5 bis -8,7
Schutzgrad		IP50			IP50	0 (IP54 bei	der Version	PP)			IF	P50 (IP5	4 bei d	er Vers	ion P	P)				IP50 (IF	P54 bei	der Ver	sion F	PP)	
Tasterart		Nylon (PA	66)			Nylon	(PA66)					١	lylon (PA66)							Nylon	(PA66)			
Kabelausgang (A=axial- R=radial)		A	E	A E		A E	A E	A	E	A	Е	A	Е	Α	E	А	Е	Α	E	A	E	А	E	А	E
Betätigung (*)		S		S		PP	٧		PV	S	3	PF		٧		P۱	/		S		PP	١	1		PV
Handelsbezeichnung		D001	RDOIL	D02L	KDUZL	PAD02L PD02L	1 1	PVAD02L	PVD02L	D04L	RD04L	PAD04L	P004L		,	PVAD04L	PVD04L				,	,		,	•
Bestellnummer		3PD01N5000		3PD02N5000	OLDOZNOZNO.	3PD02N5400 3PD02N6600		13PD02N5800	33PD02N7000	·				i.		·			,	,	ı				

^{*}Bewegung S= Feder - PP= Pneumatischer Vorschub - V= Vakuum - PV= Vorschub/Vakuum - ** Genauigkeit = +/-MAX(0,5++2*K;7*K) *** K= Messwert (mm)

DIGICROWN2

GENAUIGKEIT

Wegsensoren
und
Messnormteile

Messgeräte für Bohrungen

Messgabeln und Messringe

Mehrstellen-Messsysteme

Messuhren und elektronische Anzeigegeräte

Interfaceboxen und Datenaufnahmesysteme

Software

Mechanische Daten		±2,5 mm	±5 mm	±10 mm
Messbereich	[mm]	5	10	20
Mechanischer Weg	[mm]	6,6	11	21
Ø Körper	[mm]	8	8	8
Kabellänge	[m]	2	2	2
Betriebstemperatur	[°C]	Von -10 bis +65	Von −10 bis +65	Von -10 bis +65
Lagerungstemperatur	[°C]	Von -20 bis +100	Von -20 bis +100	Von -20 bis +100
Messtastergewinde		M2,5	M2,5	M2,5
Genauigkeit	[µm]	±(0,6+K*2)	±(0,6+K*2)	±(1,2+K*2)
Wiederholgenauigkeit (2,77 σ)	[µm]	≤0,15	≤0,15	≤0,15
Wärmebedingte Drift des Nullpunkts	[µm/°C]	<0,25	<0,25	<0,25

			3	±2,5	mm							±5 ı	mm							±10	mm			
[N/mm]	0.02	3	0,0	13	0,1	02			0,0	03	0,0	12	0,0	2			0,	03	0.	D16		-		
[N±25%]	0,70)	Von 0,7	bis 2	0	5			0,3	70	Von 0,8	bis 2	0,4	4			0	,1	Von 0	7 bis 2		-		
bar																								
			Von /,5t				ı				Von /,51								Von /,5	bis 14,5			1	
																						-		
μδι			F											uis u,/						Fluorel	I astome	r	1	
				wi	dia							wi	dia							W	idia			
	Α	E	А	Ε	Α	E	Α	E	Α	E	Α	E	Α	E	Α	E	Α	E	Α	E	Α	E	Α	E
	S		PF	•	١	I	Р	V		3	PI		٧		F	V	,	3	F	P		V	F	PV
	500	RD05	PAD05	PD05	VAD05	VD05	,		010	RD10	PADIO	PD10	VAD10	VD10			020	RD20	PAD20	PD20				
	D05N0000	D05N1200	D05N0400	D05N1600	D05N0560	D05N1760	,	ı	D10N0000	D10N1200	D10N0400	D10N1600	D10N0560	D10N1760	ı		D20N0000	D20N1200	D20N0400	D20N1600				
	[N±25%]	[N±25%] 0,70 0	[N±25%] 0,70 bar psi bar psi A E S S0 S0 S0	[N/mm] 0.023 0.0 [N±25%] 0,70 Von 0,7 bar Von 0,1 psi Von 7,51 bar psi A E A S PI	N/mm	N/mm	N±25% 0,70	N/mm	N/mm	N/mm	N/mm	N/mm	N/mm	N/mm 0.023	N/mm 0.023 0.03 0.02 0.03 0.02 0.05 0.05 0.05 0.07 0.07 0.08 0.02 0.04 0.05 0.05 0.07 0.07 0.08 0.02 0.04 0.08 0.02 0.04 0.08 0.02 0.04 0.08	N/mm 0.023 0,03 0,02 0,03 0,02 0,02 0,02 0,02 0,04 0,05 bis 1 0,070 0,070 0,070 bis 2 0,4 0,4 0,5 bis 1 0,070 0,070 bis 1 0,075 bis 14, 0,075 bi	N/mm 0.023	Name 0.023	N/mm 0.023 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.03 0.02 0.03 0.03 0.02 0.04 0.03 0.03 0.05	N/mm 0.023 0,03 0.02 0,03 0,02 0,02 0,03 0.02 0,04 0,03 0.02 0,04 0,05 0,1 0,00	N/mm 0.023 0.03 0.02 0.03 0.02 0.02 0.02 0.03 0.016 N+25% 0.70 Von 0,7 bis 2 0.5 0.5 0.70 Von 0,8 bis 2 0,4 0.1 Von 0,7 bis 2 Dar	Name 0.023 0.03 0.02 0.03 0.02 0.03 0.02 0.04 0.03 0.016 0.02 0.05 0.070 0.00 0.05 0.05 0.070 0.00 0.05 0.0	N/mm 0.023 0.03 0.02 0.03 0.02 0.02 0.02 0.02 0.03 0.016 -	Name 0.023 0.03 0.002 0.03 0.002 0.003 0.002 0.003 0.004 0.003 0.016 -

Soft Touch (ohne Dichtung)				±2,5	mm					±5	mm						±10	mm			
Federkraft	[N/mm]	0.016		0,01				0,02		0,07				0,0	030	0,	010			,	
Messkraft	[N±25%]	0,30	Vi	on 0,18 bis 1,9		Von 0,14 bis	s 2,3	0,30		Von 0,18 bis 1,9	1	Voi	n 0,14 bis 2,3	8 0,	,30	Von 0,1	18 bis 1,9				1 0,14 3 2,3
Druck des Mod. mit pneum. Vorschub	bar psi			Von 0,5 bis 2 /on 7,3 bis 29	1	Von 0.125 b Von 1.825 bis				Von 0,5 bis 2 Von 7,3 bis 29		1	ın 0.125 bis 2 on 1.825 bis 29	!			,5 bis 2 3 bis 29				125 bis 2 25 bis 29
Druck des Mod. mit Vakuumrückstellung	bar psi					Von -0,45 bis Von -6,5 bis						- 1	n -0,45 bis -0,6 on -6,5 bis -8,7								5 bis -0,6 5 bis -8,7
Schutzgrad			IP	50 (IP54 bei	der Version PP)				IP50 (IP54 bei	der Version I	PP)				IP50 (II	P54 bei ı	der Vers	ion PP)		
Tasterart				Nylon	(PA66)					Nylor	(PA66)						Nylon	(PA66)			
Kabelausgang (A=axial- R=radial)		A	Е	A E	A E	Α Ι	E	А	Е	A E	A E		A E	Α	E	Α	E	Α	E	Α	E
Betätigung (*)		S		PP	V	PV		S		PP	V		PV		S	F	op .		V	F	PV
Handelsbezeichnung		D05L	RD05L	PADOSL PDOSL		PVAD05L	PVD05L	DIOL	RD10L	PAD10L PD10L			PVAD10L PVD10L	D20L	RD20L	PAD20L	PD20L		,	PVAD20L	PVD20L
Bestellnummer		B3PD05N5000	B3PD05N6200	B3PD05N5400 B3PD05N6600		B3PD05N5800	B3PD05N7000	B3PD10N5000	B3PD10N6200	B3PD10N5401 B3PD10N6600			B3PD10N5800 B3PD10N7000	B3PD20N5000	B3PD20N6200	B3PD20N5400	B3PD20N6600			3PD20N5800	3PD20N7000

Messgeräte für Bohrungen

Messgabeln und Messringe

Mehrstellen-Messsysteme

Messuhren und elektronische Anzeigegeräte

Interfaceboxen und Datenaufnahmesysteme

Software

REDCrown2 USB ist die Ausführung mit USB-Stecker. Sie hat folgende Vorteile:

- **GENAUIGKEIT**. Die hohe Genauigkeit wird bereits bei der Herstellung gewährleistet, wenn der Linearitäts- und der Empfindlichkeitsfehler des Geräts selbst durch ein entsprechendes Einstellverfahren kompensiert werden. Jedes einzelne Gerät ist zertifiziert und mit einer Seriennummer ausgestattet, sodass seine Rückverfolgbarkeit garantiert ist.
- PLUG & GAUGE. Sämtliche Schnittstellenelektroniken des Messwertgebers sind in den USB-Stecker integriert. Es sind daher keinerlei sonstige Verbindungsvorrichtungen nötig.
- EINFACH IN DER ANWENDUNG. Der Messwert kann mit Marposs-Messrechner (Nemo, Merlin Line, E9066) angezeigt werden, oder auch durch einen direkten Anschluss an ein Gerät, das mit einem USB-Anschluss ausgestattet ist. In diesem Fall wird REDCrown2 USB als virtueller COM-Anschluss angesehen.
- ANWENDUNGEN. Es ist möglich, sowohl statische als auch dynamische Messungen durchzuführen (maximale Messfrequenz: 1000 Erfassungen/s).
- SOFTWARE-SCHNITTSTELLEN Für die Messwerterfassung stellt Marposs eigene Programme zur Verfügung (U-Com, Merlin Plus SW, Easy Acquisition SW e Quick SPC). Alternativ dazu ist es möglich, eine Reihe einfacher Protokollbefehle zu verwenden, um den Messwert in Programmierumgebungen anderer Hersteller zu integrieren.

Weiteres USB-Zubehör für die Steuerung von Eingängen/Ausgängen (U2I/O), Encodern (U1-E) und Fussschaltern (U1-FS) sind erhältlich.

Mechanische Daten		±0,5 mm	±1 mm	±2 mm	±2 mm LongRange
Messbereich	[mm]	1	2	4	4
Mechanischer Weg	[mm]	1,5	3	6,6	11
Ø Körper	[mm]	8	8	8	8
Kabellänge	[m]	2	2	2	2
Betriebstemperatur	[°C]	Von -10 bis +65	Von -10 bis +65	Von −10 bis +65	Von −10 bis +65
Lagerungstemperatur	[°C]	Von -20 bis +100			
Messtastergewinde		M2,5	M2,5	M2,5	M2,5
Genauigkeit [µm]		±(0,2+K*1)	±(0,2+K*1)	±(0,3+ 7*K)	=
Wiederholgenauigkeit (2,77 σ)	[µm]	≤0,15	≤0,15	≤0,15	≤0,15
Wärmebedingte Drift des Nullpunkts	[µm/°C]	<0,25	<0,25	<0,25	<0,25

Standard (mit Dichtung)		±0,5 mn	1		:	±1 m	nm						±	2 m	ım				2	2 m	m Lo	ongl	Rang	е
Federkraft	[N/mm]	0,17		0,14	0,04	.	0,023	3			0,0	23	0,03		0,02			0	.023	0	,03	(0,02	
Messkraft	[N±25%]	1,00		0,70	Von 0,8 bi	is 2,2	0,4				0,7	0	Von 0,7 bis	2	0,5				0,70	Von (1,7 bis 2		0,4	
Druck des Mod. mit pneum. Vorschub	bar				Von 0,5 t	bis1							Von 0,5 bi:	1						Von	1,5 bis 1			
Brock des Pidd. Hit phedin. Vorsendb	psi				Von 7,5 bi	s14,5							Von 7,5 bis	4,5						Von 7,	bis 14,5			
Druck des Mod. mit Vakuumrückstellung	bar						Von 0 bis	-0,6						V	on -0,45 bis -0,6	5						Von -0	,45 bis -0,	5
Drook door loa rakoom ookotokong	psi						Von -6,5 bi	is-8,7						۱ ا	Von −6,5 bis −8,7							Von-	5,5 bis -8,7	
Dichtung		Fluorelast.			Flu	orelas	stomer						Fluo	elas	tomer						Fluorel	astom	er	
Schutzgrad		IP65				IP6	5							IP65	i						IF	65		
Tasterart		widia				wid	ia							widi	a						Wi	idia		
		<u> </u>	_											-										
Kabelausgang (A=axial- R=radial)		A E	A	E	A	E	A	E	Α	Ε	Α	Ε	A I		A E	Α	E	A	E	A	E	A	E	A E
Betätigung (*)		S		S	PP		٧		P	V	S		PP		٧	F	PV		S		PP		٧	PV
Handelsbezeichnung		UNGS	2	URIO	UPA10	UP10	UVA10	O.A.	'	'	N20	UR20	UPA20	07-70	UVA20 UV20			'	'	'				'
Bestellnummer		8 8	E	8	8	8	099	99	1	4	1	4	100		400	1	1	1	10	1	1	1	100	1
		nyon	Juke	2Y12	12Y04	12Y16	12Y 0.	12Y17																
		B3PR01Y0000	R3PR03V000	B3PR02Y1200	B3PR02Y0400	B3PR02Y1600	B3PR02Y0560	B3PR02Y1760																

Soft Touch (ohne Dichtung)		±0,5 mm		±1	mm					±2 n	nm				±	2 mr	n Lo	ngR	ang	ge	
Federkraft	[N/mm]	0.070	0,06	0.045				0.016	0,0	01				-	0.016	0.0	10				
Messkraft	[N±25%]	0,3	0,30	Von 0,18 bis 1,		Von 0,14 bis 2	2,3	0,30	Von 0,18	3 bis 1,9		Vo	ın 0,14 bis 2,3		0,30	Von 0,18	bis 1,9			Von 0,14	ois 2
Druck des Mod. mit pneum. Vorschub	bar			Von 0,5 bis 2		Von 0.125 bis	s2		Von 0,	5bis2		Vo	on 0.125 bis 2			Von 0,	bis 2			Von 0.12	5 bis
DI OCK des Mod. Hill pheom. Voi schob	psi			Von 7,3 bis 29		Von 1.825 bis	29		Von 7,3	bis 29		Va	n 1.825 bis 2	7		Von 7,3	bis 29			Von 1.825	bis
Druck des Mod. mit Vakuumrückstellung	bar					Von -0,45 bis-	-0,6					Vor	1-0,45 bis -0	,6					V	on -0,45/	bis-
brock des Mod. Hill Vakoonii ockstettong	psi					Von -6,5 bis -	-8,7					Vo	n -6,5 bis -8,	7					1	Von -6,5	ois-8
Schutzgrad		IP50		IP50 (IP54 be	der Version	PP)		I	P50 (IP5	4 bei d	er Vers	ion PP)				IP50 (IP	4 bei o	ler Versi	on PF	P)	
Tasterart		Nylon (PA66)		Nylo	n (PA66)				-	Nylon (PA66)						Nylon	(PA66)			
Kabelausgang (A=axial- R=radial)		A E	A E	A E	A E	A E	E	A E	A	Е	Α	E	A E	A	E	Α	Е	А	E	Α	Ε
Betätigung (*)		S	S	PP	٧	PV		S	PI	P	٧		PV		S	P	P	٧		P۱	1
Handelsbezeichnung		- 1900	U10L	UPA10L UP10L		UPVA10L	UPVIUL	U2OL UR2OL	UPA20L	UP20L			UPVAZOL UPV2OL		ı	1	•	1		1	
Bestellnummer		33PR01Y5000	33PR02Y5000	33PR02Y5400		33PR02Y5800	3PKU2Y/UUU			÷	÷										

^{*} Bewegung S= Feder - PP= Pneumatischer Vorschub - V= Vakuum - PV= Vorschub/Vakuum - ** Genauigkeit = +/-MAX(0,5++2*K;7*K) *** K= Messwert (mm)

REDCROWN2 USB

GENAUIGKEIT

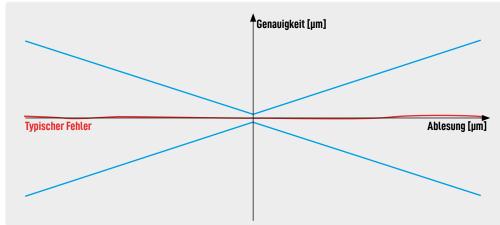
Mechanische Daten

Genauigkeit [µm]
Wiederholgenauigkeit (2,77 σ)
Wärmebedingte Drift des Nullpunkts

[µm]

[µm/°C]

Messbereich Mechanischer Weg


Ø Körper

Kabellänge

Betriebstemperatur

Messtastergewinde

Lagerungstemperatur

	±2,5 mm	±5 mm	±10 mm
[mm]	5	10	20
[mm]	6,6	11	21
[mm]	8	8	8
[m]	2	2	2
[°C]	Von -10 bis +65	Von -10 bis +65	Von −10 bis +65
[°C]		Von -20 bis +100	Von -20 bis +100

M2,5

±(0,6+K*2)

≤0,15 <0,25

Standard (mit Dichtung)					±2,5	mm							±5 ı	mm							±10	mm			
Federkraft	[N/mm]	0.0	023	0,	03	0,	02			0,1	03	0,0	12	0,0	12			0,	03	0.0	116		-		
Messkraft	[N±25%]	0,	,70	Von 0,	7 bis 2	0	,5			0,	70	Von 0,8	bis 2	0,	4			0	1,1	Von 0,	7 bis 2		-		
Druck des Mod. Pneum. Vorschub	bar			Von 0	5 bis 1							Von 0,	bis 1							Von 0,	5 bis 1				
	psi			Von 7,5	bis 14,5							Von 7,5	ois 14,5							Von 7,5	bis 14,5				
Druck des Mod. Vakuumrückstellung	bar					Von -0,4	5 bis -0,6							Von -0,45	bis -0,6								-		
	psi					Von-6,5	bis -8,7							Von-6,5	bis -8,7								-		
Dichtung					Fluorela	stomer	f						Fluorela	astomer							Fluorela	stomer	r		
Schutzgrad					IP	65							IP	65							IP	65			
Tasterart					wi	dia							wi	dia							wi	dia			
		1 1				_								_			1	1		1				1	_
Kabelausgang (A=axial- R=radial)		A	E	Α	E	A	E	A	E	Α	E	Α	E	A	E	Α	E	Α	E	Α	E	A	E	Α	E
Betätigung (*)			S	F	P	١	V	PV	1		3	P	•	٧	•	ı	PV	:	S	P	Р		V	ı	PV
Handelsbezeichnung		U25	UR25	UPA25	UP25	UVA25	UV25			020	UR50	UPA50	UP50	UVA50	UV50	•	,	0100	UR100	UPA100	UP100	UVA100	00100	1	
Bestellnummer		33PR05Y0000	83PR05Y1200	33PR05Y0400	33PR05Y1600	33PR05Y0560	33PR05Y1760			33PR10Y0000	33PR10Y1200	33PR10Y0400	33PR10Y1600	33PR10Y0560	33PR10Y1760				÷				i.		

M2,5

±(0,6+K*2) ≤0,15

<0,25

Soft Touch (ohne Dichtung)					±2,5	mm	1						±5 ı	mm							±10	mm			
Federkraft	[N/mm]	0.0	016	0,	,01					0,1	02	0,0)7					0.0	030	0.	010				
Messkraft	[N±25%]	0,	30	Von 0,1	18 bis 1,9			Von 0,1	4 bis 2,3	0,	30	Von 0,18	3 bis 1,9			Von 0,14	4 bis 2,3	0,	30	Von 0,1	8 bis 1,9			Von 0,	14 bis 2,3
Druck des Mod. mit pneum. Vorschub	bar			Von 0	,5 bis 2			Von 0.1	25 bis 2			Von 0,5	bis2			Von 0.1	25 bis 2			Von 0	5bis2			Von 0.	125 bis 2
	psi			Von 7,	3 bis 29			Von 1.82	5 bis 29			Von 7,3	bis 29			Von 1.82	5 bis 29			Von 7,	3 bis 29			Von 1.8	25 bis 29
Druck des Mod. Vakuumrückstellung	bar							Von-0,4	5 bis -0,6							Von -0,4	5,0-2id 5							Von-0,4	45 bis -0,6
	psi							Von -6,5	bis -8,7							Von-6,5	bis -8,7							Von -6	5 bis -8,7
Schutzgrad				IP50 (IF	954 bei i	der Ver	sion PP)				IP50 (IF	54 bei o	der Vers	sion PP)				IP50 (II	P54 bei i	der Ver	sion PP)		
Tasterart					Nylon	(PA66)							Nylon	(PA66)							Nylon	(PA66)			
Kabelausgang (A=axial- R=radial)		А	E	А	E	Α	E	A	E	Α	E	Α	E	Α	E	A	E	Α	E	А	E	А	E	А	E
Betätigung (*)		!	S	F	P		V	F	٧	5	3	P	P	١	1	P	٧		S	F	P		٧	1	PV
Handelsbezeichnung		UZSL	UR25L	UPA25L	UP25L		•	UPVA25L	UPV25L	N20F	UR50L	UPA50L	UP50L			UPVA50L	UPV50L	U100L	UR100L	UPA100L	UP100L			UPVA100L	UPV100L
Bestellnummer		B3PR05Y5000	B3PR05Y6200	B3PR05Y5400	B3PR05Y6600			B3PR05Y5800	B3PR05Y7000	B3PR10Y5000	B3PR10Y6200	B3PR10Y5400	B3PR10Y6600			B3PR10Y5800	B3PR10Y7000								

Wegsensoren und Messnormteile

Messgeräte für Bohrungen

Messgabeln und Messringe

Mehrstellen-Messsysteme

Messuhren und elektronische Anzeigegeräte

Interfaceboxen und Datenaufnahmesysteme

Software

Linie REDCrown2

M2,5

±(1,2+K*2)

≤0,15 <0,25

ABMESSUNGEN

Wegsensoren und Messnormteile

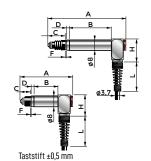
Messgeräte für Bohrungen

Messgabeln und Messringe

Mehrstellen-Messsysteme

Messuhren und elektronische Anzeigegeräte

Interfaceboxen und Datenaufnahmesysteme

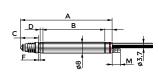


Software



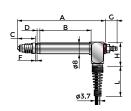
STANDARD _

AXIAL MIT FEDER 36,20 24,35 7,10 2,00 2,05 0,70 59,40 83,35 106,35 41,25 61,05 75,50 12,80 17,25 25,30 2,00 2 2,00 83,35 61,05 114,45 86,60 120,65 16,75 2,00 22,30 2,00 39,45 2,00 1,30 1,50 1,50 -Taststift ±0,5 mm 1 1,50 G H -22,00 22,00 22.00 22.00 22.00 22.00 F= Max. Vorhubeinstellung



RADIAL MIT FEDER

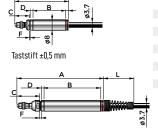
F= Max. Vorhubeinstellung


AXIAL - PNEUMATISCHER VORSCHUB

: 0,0	±Ι	±Ζ	± ZLR	± 2,3	±ο	± IU
-	65,98	86,65	109,65	86,65	117,75	166,75
-	44,55	61,05	75,50	61,05	86,60	120,65
-	12,80	17,25	25,30	16,75	22,30	39,45
-	2,00	2,00	2,00	2,00	2,00	-
-	-	-	-	-	-	-
-	1,30	1	1,50	1,50	1,50	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	-	-	-	-	-	-
-	6,00	6,00	6,00	6,00	6,00	6,00
	- - - - - -	- 65,98 - 44,55 - 12,80 - 2,00 - 1,30 	- 65,98 86,65 - 44,55 61,05 - 12,80 17,25 - 2,00 2,00 - 1,30 1 	- 65,98 86,65 109,65 44,55 61,05 75,50 12,80 17,25 25,30 2,00 2,00 - 1,30 1 1,50 - 1,5	- 65,98 86,65 109,65 86,65 44,55 61,05 75,50 61,05 - 12,80 17,25 25,30 16,75 - 2,00 2,00 2,00 2,00 13,30 1 1,50 1,50	- 65,98 86,65 109,65 86,65 117,75 - 44,55 61,05 75,50 61,05 86,60 - 12,80 17,25 25,30 16,75 22,30 - 2,00 2,00 2,00 2,00 2,00 2,00 - 1,30 1 1,50 1,50 1,50 - 1,50 - 1,50 - 1,50 1,50 - 1,50 - 1,50 - 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50

F= Max. Vorhubeinstellung

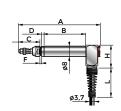
RADIAL - PNEUMATISCHER VORSCHUB



	± 0,5	±1	± 2	± 2LR	± 2,5	± 5	± 10
Α	-	71,75	84,85	107,85	84,85	115,95	163,95
В	-	36,10	54,1	68,55	52,60	78,15	112,50
С	-	12,80	17,25	25,30	16,75	22,30	39,45
D	-	2,00	2,00	2,00	2,00	2,00	-
Ε	-	-	-	-	-	-	-
F	-	1,30	1	1,50	1,50	1,50	-
G	-	7,50	-	7,50	7,50	7,50	7,50
Н	-	15,20	15,20	15,20	15,20	15,20	15,20
L	-	22,00	22,00	22,00	22,00	22,00	22,00
М	-	7,5	7,5	7,5	7,5	7,5	7,5

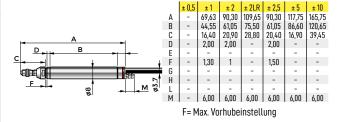
F= Max. Vorhubeinstellung

SOFT TOUCH

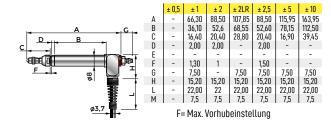

AXIAL MIT FEDER

	± 0,5	±1	± 2	± 2LR	± 2,5	± 5	± 10
Α	39,90	63,00	87,00	106,35	87,00	114,45	162,45
A B C D E F G	24,35	41,25	61,05	75,50	61,05	86,60	120,65
С	10,65	16,40	20,9	28,80	20,40	22,30	39,45
D	2,00	2,00	2	-	2,00	-	-
Ε	2,05	-	-	-	-	-	-
F	0,70	1,30	1	-	1,50	-	-
	-	-	-	-	-	-	-
Н	-	-	-	-	-	-	-
L	-	22,00	22,00	22,00	22,00	22,00	22,00
М	-	-	-	-	-	-	-
	гм	ov Vo	rhuha	inatal			

F= Max. Vorhubeinstellung


RADIAL MIT FEDER

	± 0,5	±1	± 2	± 2LR	± 2,5	±5	± 10
Α	-	61,43	88,50	107,85	88,50	115,95	163,95
В	-	31,20	54,1	68,55	54,10	79,65	112,50
С	-	16,40	20,9	28,80	20,40	16,90	39,45
D	-	2,00	2	-	2,00	-	-
Ε	-	-	-	-	-	-	-
F	-	1,30	1	-	1,50	-	-
G	-	-	-	-	-	-	-
Н	-	15,20	15,20	15,20	15,20	15,20	15,20
L	-	22,00	22,00	22,00	22,00	22,00	22,00
M	-	-	-	-	-	-	-


F= Max. Vorhubeinstellung

AXIAL - PNEUMATISCHER VORSCHUB

Alle Größen beziehen sich auf die Position Null.

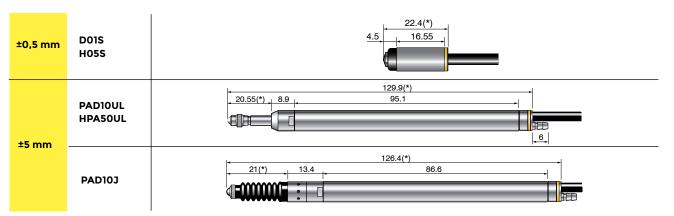
RADIAL - PNEUMATISCHER VORSCHUB

Sämtliche Zeichnungen und die 3D-Modelle sind auf der Marposs-Internetseite zu finden.

SPEZIAL-MESSKÖPFE

ULTRA-SHORT-MESSTASTER Das Modell D01S bietet mit nur 22,4 mm einen Messbereich von insgesamt 1 mm. Die hohe Genauigkeit und sein einfacher Gebrauch (er ist ganz leicht zu befestigen, wie jeder Messtaster mit einem Spanndurchmesser von 8 mm) ermöglichen es, dieses Modell für alle Einrichtungen zu verwenden, bei denen eine kompakte Größe gefragt ist.

ULTRA-SOFT-TOUCH MESSTASTER Das Modell PAD10UL hat eine Messkraft bei elektrischer Null von 0,12 N in horizontaler Lage bei 0,2 bar und von 0,05 N in vertikaler Lage bei 0,2 bar (wenn der Messtaster nach oben gerichtet ist). Mit diesem Modell ist es möglich, besonders empfindliche Oberflächen zu vermessen, die keine Kratzer bekommen dürfen, sowie sehr leichte Werkstücke, die bei zu hohen Messkräften verformt werden könnten.


MESSTASTER MIT NIEDRIGER MESSKRAFT UND DICHTUNG Das Modell PAD10J ist die Version "Jet": Es wurde konzipiert, um mit niedriger Messkraft zu arbeiten, ähnlich derjenigen der Soft-Touch-Modelle. Seine Besonderheit ist jedoch die Dichtung, die seine Schmutzfestigkeit erhöht. Die Löcher im runden Kranz erlauben die Anwendung ohne Verformung der Dichtung, die somit eine längere Lebensdauer hat.

Technische Daten		±0,5 mm	±5 mm	±5 mm
Kabelausgang (A=axial- R:	-radial)	А	Α	Α
Betätigung (*)		S	PP	PP
Messbereich	[mm]	1	10	10
Mechanischer Weg	[mm]	1,5	11	11
Ø Körper	[mm]	8	8	8
Federkraft	[N/mm]	0,17	0.003	0.007
Messkraft	[N±25%]	0,60	0,12	0,30
Drugh doe Med mit speum	versebub bar	-	0,20	0,5 ÷ 2
Druck des Mod. mit pneum	PSi	-	2,90	7,3 ÷ 29
Druck des Mod. mit Vakuui	nriioketellung bar	-	-	-
DI UCK UES MUU. IIIIL VAKUUI	psi	-	-	-
Kabellänge	[m]	2	2	2
Dichtung		Fluorelastomer	-	Fluorelastomer
Wiederholgenauigkeit (2,7	7σ) [μm]	≤0,15	≤0,15	≤0,15
Wärmebedingte Drift des N	Nullpunkts [µm/°C]	<0,25	<0,25	<0,25
Betriebstemperatur	[°C]	(-10)÷(+65)	(-10)÷(+65)	(-10)÷(+65)
Lagerungstemperatur	[°C]	(-20)÷(+100)	(-20)÷(+100)	(-20)÷(+100)
Schutzgrad		IP65	IP54	IP54
Tasterart		widia	Nylon (PA66)	Nylon (PA66)
Messtastergewinde		M2,5	M2,5	M2,5

HBT MARPOSS DIGITAL		D01S B3PD01S0000	PAD10UL B3PD10N5410	PAD10J B3PD10N0558
Genauigkeit [µm]		±(0,2+K*1)	±(0,6+K*2)	±(0,6+K*2)
HBT TESA ANALOG		H05S B3PR01T0100	HPA50UL B3PR10T5410	-
Typische Empfindlichkeit	[mV/V/mm]	73,75	29,5	-
Kalibriert auf		3_{v} RMS @13KHz mit Last 2K Ω ±0,1%	$_{ extsf{V}}^{ extsf{RMS}}$ @13KHz mit Last 2K Ω ±0,1%	-
Genauigkeit [µm]		±(0,2+K**1)	±(0,2+K**1)	-

^{*} Bewegung S= Feder - PP= Pneumatischer Vorschub. K= Messwert [mm]

ABMESSUNGEN

^(*) Größe bei Position Null.

Wegsensoren und Messnormteile

Messgeräte für Bohrungen

Messgabeln und Messringe

Mehrstellen-Messsysteme

Messuhren und elektronische Anzeigegeräte

Interfaceboxen und Datenaufnahmesysteme

Software

Für weitere Sondermodelle (z.B. mit Betätigung durch Schwerkraft) setzen Sie sich bitte mit Marposs in Verbindung.

Messgeräte für Bohrungen

Messgabeln und Messringe

Mehrstellen-Messsysteme

Messuhren und elektronische Anzeigegeräte

Interfaceboxen und Datenaufnahmesysteme

Software

TESA (HBT) _____

Standard	± 0,	5 mm	±1	mm	± 2 mm		
	Α	E	Α	E	Α	E	
Feder	B3PR01T0000	B3PR01T1200	B3PR02T0000	B3PR02T0000	B3PR05T0199	B3PR05T1399	
Pneum. Vorschub	NA	NA	B3PR02T0400	B3PR02T0400	-	-	
Vakuum	NA	NA	B3PR02T0560	B3PR02T0560	-	-	
Soft Touch	± 0,	5 mm	± 1 mm		± 2 mm		
	Α	E	Α	E	А	E	
Feder	B3PR01T5000	B3PR01T6200	B3PR02T5000	B3PR02T6200	B3PR05T5199	-	
Feder Pneum. Vorschub	B3PR01T5000 NA	B3PR01T6200 NA	B3PR02T5000 B3PR02T5400	B3PR02T6200 B3PR02T6600	B3PR05T5199 -	- -	

MERCER (HBT)

Standard	± 0,5 mm		±1	mm	± 1,5 mm		
	Α	E	Α	E	А	E	
Feder	B3PR01R0000	B3PR01R1200	B3PR02R0000	B3PR02R1200	B3PR05R0199	-	
Pneum. Vorschub	NA	NA	B3PR02R0400	B3PR02R1600	-	-	
Vakuum	NA	NA	B3PR02T0560	B3PR02T1760	-	-	

METEM (HBT)

Standard	± 0,	5 mm	±1	mm	± 2 mm		
	A	E	A	E	A	E	
Feder	B3PR01S0000	B3PR01S1200	B3PR02S0000	B3PR02S1200	-	-	
Pneum. Vorschub	NA	NA	B3PR02S0400	B3PR02S1600	-	-	
Vakuum	NA	NA	B3PR02S0560	B3PR02S1760	-	-	
Soft Touch	± 0,5 mm		± 1 mm		± 2 mm		
Joil Touch	± 0,	o mm	- 11	111111	± 2 1	111111	
Join Touch	A A	e mm	A	E	A A	E	
Feder		E B3PR01S6200		E B3PR02S6200		E -	
	A	E	A	E	A	E	

MAHR (HBT)

STANDARD	± 0:	5 mm	±1	mm	± 2 mm	
	Α	E	Α	E	A	E
Feder	B3PR01P0000	B3PR01P1200	B3PR02P0000	B3PR02P1200	B3PR05P0199	-
Pneum. Vorschub	NA	NA	B3PR02P0400	B3PR02P1600	-	-
Vakuum	NA NA	NA NA	B3PR02P0560	B3PR02P1760	-	-

MICROCONTROL (LVDT)

Standard	± 0,!	5 mm	±1	mm	± 1,5	mm
	А	E	Α	E	А	E
Feder	B3PR01K0000	B3PR01K1200	B3PR02K0000	B3PR02K1200	-	-
Pneum. Vorschub	NA	NA	B3PR02K0400	B3PR02K1600	-	-
Vakuum	NA	NA	B3PR02K0560	B3PR02K1760	-	-
Soft Touch	± 0,!	5 mm	± 1 mm		± 1,5 mm	
	A	E	Α	E	A	E
Feder	-	-	-	B3PR02K6200	-	-
Pneum. Vorschub	NA	NA	B3PR02K5400	B3PR02K6600	-	-
Vakuum	NA	NA	-	-	-	-

Bitte setzen Sie sich mit Marposs in Verbindung, um Informationen über mögliche sonstige kompatible Modelle zu erhalten, die nicht in dieser Liste enthalten sind (z.B. Solartron).

KOMPATIBLE STANDARD-MODELLE

TESA (HBT)

Standard	± 2 mm Lo	± 2 mm LongRange		mm	± 5 ı	± 5 mm		± 10 mm	
	Α	E	Α	E	Α	E	Α	E	
Feder	B3PR05T0199	B3PR10T1399	B3PR05T0000	B3PR05T1200	B3PR10T0000	B3PR10T1200	B3PR20T0000	B3PR20T1200	
Pneum. Vorschub	B3PR10T0559	B3PR10T1759	B3PR05T0400	B3PR05T1600	B3PR10T0400	B3PR10T1600	B3PR20T0400	B3PR20T1600	
Vakuum	B3PR10T0599	B3PR10T1799	B3PR05T0560	B3PR05T1760	B3PR10T0560	B3PR10T1760	-	-	
Soft Touch	± 2 mm Lo	ongRange	± 2,5	± 2,5 mm		± 5 mm		± 10 mm	
	Α	E	А	E	Α	E	А	E	
Feder	B3PR10T5199	B3PR10T6399	B3PR05T5000	B3PR05T6200	B3PR10T5000	B3PR10T6200	B3PR20T5000	B3PR20T6200	
Pneum. Vorschub	B3PR10T5559	B3PR10T6759	B3PR05T5400	B3PR05T6600	B3PR10T5400	B3PR10T6600	B3PR20T5400	B3PR20T6600	
Vakuum	B3PR10T5599	B3PR10T6799	B3PR05T5560	B3PR05T6760	B3PR10T5560	B3PR10T6760	B3PR20T5560	B3PR20T6760	

MERCER (HBT)

Standard	± 2 mm LongRange		± 2,5 mm		± 5 mm		± 10 mm	
	Α	E	Α	E	Α	E	Α	E
Feder	-	B3PR10T1799	B3PR05R0000	B3PR05R1200	B3PR10R0000	B3PR10R1200	B3PR20R0000	B3PR20R1200
Pneum. Vorschub	-	-	B3PR05R0400	B3PR05R1600	B3PR10R0400	B3PR10R1600	B3PR20R0400	B3PR20R1600
Vakuum	B3PR10T0599	-	B3PR05R0560	B3PR05R1760	B3PR10R0560	B3PR10R1760	-	-

METEM (HBT)

Standard	± 2 mm Lo	ongRange	± 2,5 mm		± 5 mm		± 10 mm	
	Α	E	A	E	Α	E	A	E
Feder	-	-	B3PR05S0000	B3PR05S1200	B3PR10S0000	B3PR10S1200	B3PR20S0000	B3PR20S1200
Pneum. Vorschub	-	-	B3PR05S0400	B3PR05S1600	B3PR10S0400	B3PR10S1600	B3PR20S0400	B3PR20S1600
Vakuum	-	-	B3PR05S0560	B3PR05S1760	B3PR10S0560	B3PR10S1760	-	-
Soft Touch	± 2 mm Lo	ongRange	± 2,5 mm		± 5 mm		± 10 mm	
	Α	E	А	E	Α	E	Α	E
Feder	-	-	B3PR05S5000	B3PR05S6200	B3PR10S5000	B3PR10S6200	B3PR20S5000	B3PR20S6200
Pneum. Vorschub	-	_	B3PR05S5400	B3PR05S6600	B3PR10S5400	B3PR10S6600	B3PR20S5400	B3PR20S6600
Vakuum	_	_	B3PR05S5560	B3PR05S6760	B3PR10S5560	B3PR10S6760	B3PR20S5560	B3PR20S6760

MAHR (HBT) _____

Standard	± 2 mm Lo	ongRange	± 2,5 mm		± 5 mm		± 10 mm	
	Α	E	Α	E	Α	E	Α	E
Feder	-	-	B3PR05P0000	B3PR05P1200	B3PR10P0000	B3PR10P1200	B3PR20P0000	B3PR20P1200
Pneum. Vorschub	-	-	B3PR05P0400	B3PR05P1600	B3PR10P0400	B3PR10P1600	B3PR20P0400	B3PR20P1600
Vakuum	-	-	B3PR05P0560	B3PR05P1760	B3PR10P0560	B3PR10P1760	-	-

MICROCONTROL (LVDT)

Standard	± 2 mm Lo	ongRange	± 2,5 mm		± 5 mm		± 10 mm	
	Α	E	Α	E	Α	E	Α	E
Feder	-	-	B3PR05K0000	B3PR05K1200	B3PR10K0000	B3PR10K1200	B3PR20K0000	B3PR20K1200
Pneum. Vorschub	-	-	B3PR05K0400	B3PR05K1600	B3PR10K0400	B3PR10K1600	B3PR20K0400	B3PR20K1600
Vakuum	-	-	B3PR05K0560	B3PR05K1760	B3PR10K0560	B3PR10K1760	-	-
Soft Touch	± 2 mm Lo	ongRange	± 2,5 mm		± 5 mm		± 10 mm	
	Α	E	Α	E	Α	E	Α	E
Feder	-	-	B3PR05K5000	B3PR05K6200	B3PR10K5000	B3PR10K6200	B3PR20K5000	B3PR20K6200
Pneum. Vorschub	-	-	B3PR05K5400	B3PR05K6600	B3PR10K5400	B3PR10K6600	B3PR20K5400	B3PR20K6600
Vakuum	-	-	-	-	B3PR10K5560	-	-	-

Wegsensoren und Messnormteile

Messgeräte für Bohrungen

Messgabeln und Messringe

Mehrstellen-Messsysteme

Messuhren und elektronische Anzeigegeräte

Interfaceboxen und Datenaufnahmesysteme

Software

DRUCKLUFT-SYSTEM

Wegsensoren und Messnormteile

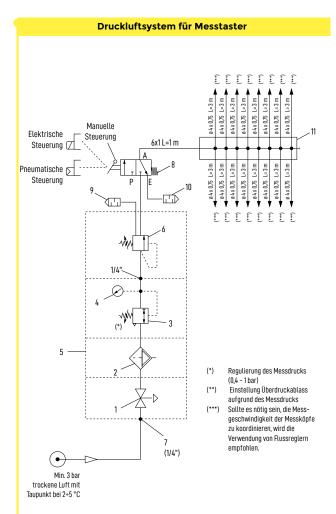
Messgeräte für Bohrungen

Messgabeln und Messringe

Mehrstellen-Messsysteme

Messuhren und elektronische Anzeigegeräte

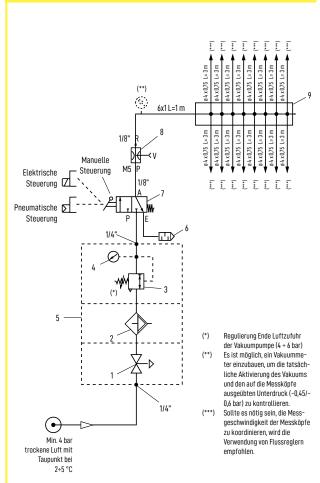
Interfaceboxen und Datenaufnahmesysteme



Software

Für Anwendungen mit Längenmesstastern mit pneumatischer Zu- und Vakuumrückstellung muss das Druckluftsystem so bemessen sein, wie es in den folgenden Darstellungen gezeigt ist.

Luft: Die Luft muss trocken und ölfrei sein, einen Taupunkt zwischen 2 und 5 °C sowie eine Filterung von 5 µm haben.



Pos.	Menge	Beschreibung
1	1	Absperrventil 1/4"
2	1	5-µ-Filter mit halbautomatischem Ablass
3	1	Druckregler
4	1	Manometer ø 50 1/8" Skala 0÷4 bar
5	2	Schnellklemme mit Bügel 72
6	1	Überdruck-Ablassventil
7	1	Joch 1/4"
8	1	Monostabiles 3-Wege-Ventil, 2 Positionen, mit Hebel
9	1	Schalldämpfer 1/2"
10	1	Schalldämpfer 1/8"
11	1	Verteiler für max. 16 Sonden

Anwendungsspezifikationen für Messtaster mit pneumatischem Vorschub:

- Standardversion mit Dichtung 0,4÷1 bar
- Version ohne Dichtung 0,5÷2 bar

Pneumatisches Layout für die Tasterrückstellung mit Vakuum

Pos.	Menge	Beschreibung
1	1	Absperrventil 1/4"
2	1	Filter 5µ mit halbautomatischem Ablass
3	1	Druckregler
4	1	Manometer ø 50 1/8" Skala 0÷4 bar
5	2	Schnellklemme mit Bügel 72
6	1	Schalldämpfer 1/2"
7	1	Monostabiles 3-Wege-Ventil, 2 Positionen, mit Hebel
8	1	Vakuumpumpe
9	1	Verteiler für max. 16 Sonden

Anwendungsspezifikationen für Messtaster mit Federzustellung und Vakuumrückstellung:

- Standardversion mit Dichtung -0,45÷ -0,6 bar
- Version ohne Dichtung 0,5÷2 bar

FEDERN UND OPTIONALES ZUBEHÖR

Federn		±0,5 mm	±1 mm	±2 mm	±2LR mm	±2,5 mm	±5 mm	±10 mm
	0,3 (N)	B1024099751	-	-	-	-	-	-
	1 (N)	-	B1042414237	-	-	B1042414435	B1042414537	-
	1,6 (N)	-	-	-	-	B1042414441	B1042414561	B1042414736
	2 (N)	B1024099753	B1042414236	-	-	B1042414436	B1042414536	-
	2,5 (N)	B1024099754	B1042414235	-	-	B1042414437	-	-

Wegsensoren
und
Messnormteil

Messgeräte für Bohrungen

Messgabeln und Messringe

Mehrstellen-Messsysteme

Messuhren und elektronische Anzeigegeräte

Interfaceboxen und Datenaufnahmesysteme

Software

Tasteinsätze (Gewinde M2.5)	Beschreibung	Bestellnummer
1.2 8.9 5.5	Tasteinsatz-Radius R1,5 mm - Hartmetall (Standard)	B3394241450
11 12 5	Tasteinsatz-Radius R1,5 mm - Nylon (Soft Touch)	B3394156100
2,2 10,7 4,5	Tasteinsatz-Radius R2,5 mm - Hartmetall	B3392409910
03 45	Tasteinsatz mit flachem Messeinsatz – Hartmetall	B3392409912
8.3	Full-Flat-Tasteinsatz - Hartmetall	B3394241401
R=0,5 4,5 2,5	Tasteinsatz mit schneidenförmigem Messeinsatz - Hartmetall	B3392409914

V erlängerungen	Beschreibung	Bestellnummer
	Verlängerung, 1 m	B6735932026
	Verlängerung, 2 m	B6735932015
	Verlängerung, 5 m	B6735932016
	Verlängerung, 10 m	B6735932017
LVDT / HBT	Verlängerung, 15 m	B6735932037

Befestigung	Beschreibung	Bestellnummer
	Hülse, Außendurchmesser 10 mm*	B1019826001
	Hülse, Außendurchmesser 3/8"	B1019826002
	Stift M3x10	B1024099760
11,5	Stift 4-40 UNC x 0,375"	B1024099761
8 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	Zange für Hülse mit ø 8 - Kompaktversion	B2042414100
26 6 12 EH	Zange für Hülse mit ø 8 - für Standardschlüssel	B2042414200

	Schlüssel zur Vorhubeinstellung	B1346040027
Luftanschlüsse	Beschreibung	Bestellnummer
7,5	Axialer Luftanschluss	B4430RSMV03
7,5		

Beschreibung

Radialer Luftanschluss

Schlüssel

Linie REDCrown2

Bestellnummer

B4430RSMVAB

^{*} Empfohlene Bohrungstoleranz: G7

KREIEREN SIE IHRE EIGENE SONDE

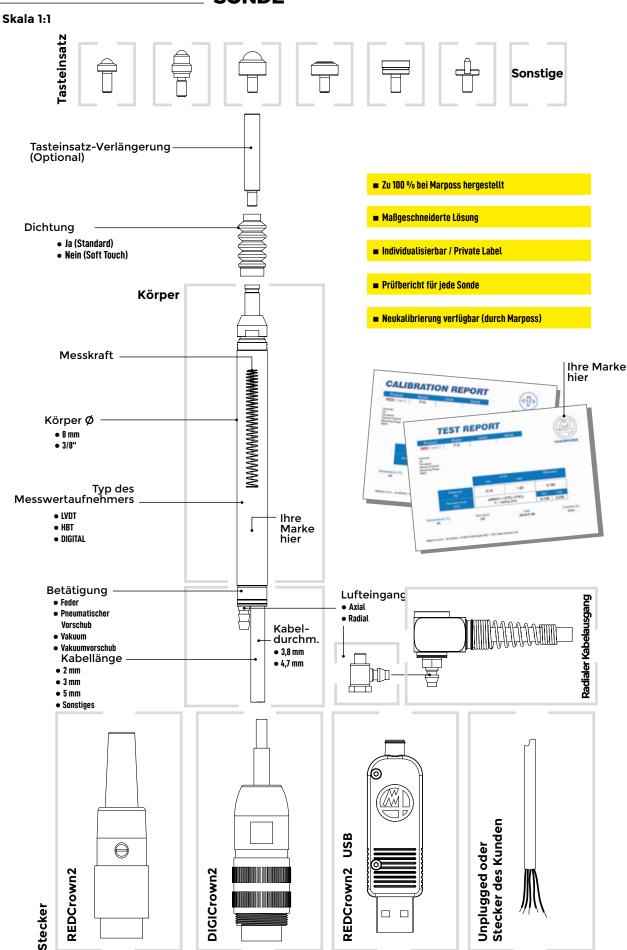
Wegsensoren und Messnormteile

Messgeräte für Bohrungen

Messgabeln und Messringe

Mehrstellen-Messsysteme

Messuhren und elektronische Anzeigegeräte



Interfaceboxen und Datenaufnahmesysteme

Software

